Writing a theorem prover comparison

Due to the nature of the mathematics on this site it is best views in landscape mode.

Writing a theorem prover comparison

This is primarily a list of Greatest Mathematicians of the Past, but I use birth as an arbitrary cutoff, and two of the "Top " are still alive now.

Click here for a longer List of including many more 20th-century mathematicians. Click for a discussion of certain omissions.

Proof assistant - Wikipedia

Please send me e-mail if you believe there's a major flaw in my rankings or an error in any of the biographies. Obviously the relative writing a theorem prover comparison of, say Fibonacci and Ramanujan, will never satisfy everyone since the reasons for their "greatness" are different.

I'm sure I've overlooked great mathematicians who obviously belong on this list. Please e-mail and tell me! Following are the top mathematicians in chronological birth-year order. By the way, the ranking assigned to a mathematician will appear if you place the cursor atop the name at the top of his mini-bio.

Earliest mathematicians Little is known of the earliest mathematics, but the famous Ishango Bone from Early Stone-Age Africa has tally marks suggesting arithmetic. The markings include six prime numbers 5, 7, 11, 13, 17, 19 in order, though this is probably coincidence.

The advanced artifacts of Egypt's Old Kingdom and the Indus-Harrapa civilization imply strong mathematical skill, but the first written evidence of advanced arithmetic dates from Sumeria, where year old clay tablets show multiplication and division problems; the first abacus may be about this old.

By years ago, Mesopotamian tablets show tables of squares, cubes, reciprocals, and even logarithms and trig functions, using a primitive place-value system in base 60, not Babylonians were familiar with the Pythagorean Theorem, solutions to quadratic equations, even cubic equations though they didn't have a general solution for theseand eventually even developed methods to estimate terms for compound interest.

The Greeks borrowed from Babylonian mathematics, which was the most advanced of any before the Greeks; but there is no ancient Babylonian mathematician whose name is known. Also at least years ago, the Egyptian scribe Ahmes produced a famous manuscript now called the Rhind Papyrusitself a copy of a late Middle Kingdom text.

It showed simple algebra methods and included a table giving optimal expressions using Egyptian fractions. Today, Egyptian fractions lead to challenging number theory problems with no practical applications, but they may have had practical value for the Egyptians.

The Greatest Mathematicians An assert macro with informative failure reports, as a syntax-rule or a defmacro.
Analyzing the Meaning of Sentences In this talk, we provide a short introduction to the Lean theorem prover and its metaprogramming framework. We also describe how this framework extends Lean's object language with an API to many of Lean's internal structures and procedures, and provides ways of reflecting object-level expressions into the metalanguage.
Automated theorem proving - Wikipedia It is not trivial to separate commercial and non-commercial purposes.
A simple linear pattern matcher Other Years Back for a seventh installment, the Haskell eXchange is an annual conference created for and by the Skills Matter community. An opportunity for Haskellers to meet, learn and share skills, discover emerging technologies and help evolve the Haskell ecosystem.
Calculus II - Comparison Test for Improper Integrals Logical foundations[ edit ] While the roots of formalised logic go back to Aristotlethe end of the 19th and early 20th centuries saw the development of modern logic and formalised mathematics. This approach was continued by Russell and Whitehead in their influential Principia Mathematicafirst published —, [3] and with a revised second edition in

The Pyramids demonstrate that Egyptians were adept at geometry, though little written evidence survives. Babylon was much more advanced than Egypt at arithmetic and algebra; this was probably due, at least in part, to their place-value system. But although their base system survives e.

The Vedics understood relationships between geometry and arithmetic, developed astronomy, astrology, calendars, and used mathematical forms in some religious rituals. The earliest mathematician to whom definite teachings can be ascribed was Lagadha, who apparently lived about BC and used geometry and elementary trigonometry for his astronomy.

Scheme Macro Programming

Apastambha did work summarized below; other early Vedic mathematicians solved quadratic and simultaneous equations.

Other early cultures also developed some mathematics. The ancient Mayans apparently had a place-value system with zero before the Hindus did; Aztec architecture implies practical geometry skills. Ancient China certainly developed mathematics, in fact the first known proof of the Pythagorean Theorem is found in a Chinese book Zhoubi Suanjing which might have been written about BC.

Thales may have invented the notion of compass-and-straightedge construction. Several fundamental theorems about triangles are attributed to Thales, including the law of similar triangles which Thales used famously to calculate the height of the Great Pyramid and "Thales' Theorem" itself: The other "theorems" were probably more like well-known axioms, but Thales proved Thales' Theorem using two of his other theorems; it is said that Thales then sacrificed an ox to celebrate what might have been the first mathematical proof in Greece.

Thales was also an astronomer; he invented the day calendar, introduced the use of Ursa Minor for finding North, invented the gnomonic map projection the first of many methods known today to map part of the surface of a sphere to a plane, and is the first person believed to have correctly predicted a solar eclipse.

His theories of physics would seem quaint today, but he seems to have been the first to describe magnetism and static electricity. Aristotle said, "To Thales the primary question was not what do we know, but how do we know it. It is said he once leased all available olive presses after predicting a good olive season; he did this not for the wealth itself, but as a demonstration of the use of intelligence in business.

Thales' writings have not survived and are known only second-hand. Since his famous theorems of geometry were probably already known in ancient Babylon, his importance derives from imparting the notions of mathematical proof and the scientific method to ancient Greeks.

Thales' student and successor was Anaximander, who is often called the "First Scientist" instead of Thales: Anaximander is famous for astronomy, cartography and sundials, and also enunciated a theory of evolution, that land species somehow developed from primordial fish!

Anaximander's most famous student, in turn, was Pythagoras. The methods of Thales and Pythagoras led to the schools of Plato and Euclid, an intellectual blossoming unequaled until Europe's Renaissance. For this reason Thales may belong on this list for his historical importance despite his relative lack of mathematical achievements.

Apastambha ca BC India The Dharmasutra composed by Apastambha contains mensuration techniques, novel geometric construction techniques, a method of elementary algebra, and what may be an early proof of the Pythagorean Theorem.

Apastambha built on the work of earlier Vedic scholars, especially Baudhayana, as well as Harappan and probably Mesopotamian mathematicians.

His notation and proofs were primitive, and there is little certainty about his life. However similar comments apply to Thales of Miletus, so it seems fair to mention Apastambha who was perhaps the most creative Vedic mathematician before Panini along with Thales as one of the earliest mathematicians whose name is known.TOAST.

Books by Charles Stross. Singularity Sky.

The Atrocity Archive. Iron Sunrise.

writing a theorem prover comparison

The Family Trade. The Hidden Family. Accelerando. TOAST. Charles Stross. COSMOS BOOKS. Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs.

Automated reasoning over mathematical proof was a major impetus for the development of computer science. theorem prover in Prolog, but this offers uncertain advantages in comparison with writing a theorem prover in any other language, such as LISP.

Writing a theorem prover in Prolog would certainly result in a theorem prover whose inference operations are performed at a markedly lower rate than Prolog's own. 1. Startup Tools Click Here 2. Lean LaunchPad Videos Click Here 3. Founding/Running Startup Advice Click Here 4.

Market Research Click Here 5. Life Science Click Here 6. China Market Click Here Startup Tools Getting Started Why the Lean Startup Changes Everything - Harvard Business Review The Lean LaunchPad Online Class - FREE How to Build a Web Startup.

writing a theorem prover comparison

Back for a seventh installment, the Haskell eXchange is an annual conference created for and by the Skills Matter community. An opportunity for Haskellers to meet, learn and share skills, discover emerging technologies and help evolve the Haskell ecosystem. Applicative syntax-rules: macros that compose better.

The syntax-rule macro system of R5RS does not seem to scale beyond simple macros. It is very difficult to write macros that compose, to assemble complex macros from already written and tested components.

A circumscriptive theorem prover - ScienceDirect